- Efficiency 82\%
- Low output noise
- Six-sided shielding
- Input-to-output isolation
- Soft start
- External synchronization
- Short circuit protection
- Thermal protection
- Industry standard pinout

Q25001 24W DC/DC Converter

9-36Vin, +/-12Vout@+/-1000mA

Beta Dyne is protected under various patents, including but not limited to U.S. Patent numbers: 5,777,519; 6,188,276; 6,262,901; 6,452,818; 6,473,3171.

Functional Description

The Q25001 is a $4: 1$ input range DC/DC converter that accepts $9-36 \mathrm{~V}$ in and provide $+/-12 \mathrm{Vout}$ at $+/-1000 \mathrm{~mA}$. The converter is designed to synchronize to an external clock of 400 kHz .

Electrical Specifications

 INPUT SPECIFICATIONS| PARAMETER | CONDITION / NOTE | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range | | 9 | 24 | 36 | Vdc |
| Input Startup Voltage | | 8 | | 9 | Vdc |
| Input Overvoltage Shutdown $24 \mathrm{~V}_{\text {IN }}$ | | 37 | | | Vdc |
| Input Filter | Capacitor | | | | |
| No Load Input Current | | | 17 | | mA |
| Full Load Input Current | | | 1199 | | mA |
| Input Surge Current (20μ S Spike) | | | | 10 | A |
| Off State Current | | | 2.7 | | mA |
| Remote ON/OFF Control | | | | | |
| Supply ON | Pin 3 Open (Open circuit voltage: 10V Max.) | | | | |
| Supply OFF | | 0 | | 0.6 | Vdc |
| Logic Input Reference | -Vin | | | | |
| Logic Compatability | TTL Open Collector or CMOS Open Drain | | | | |

OUTPUT SPECIFICATIONS

PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Voltage			+/-12		Vdc
Output Voltage Accuracy	with balanced loads		1		\%
Output Current			+/-1000		mA
Output Voltage Adjustment			± 5	± 10	\%
Ripple \& Noise	For further reduction see Figure 1		20		mV
Line Regulation	Minimum $\mathrm{V}_{\text {IN }}$ to maximum $\mathrm{V}_{\text {IN }}$		$\pm .1$		\%
Load Regulation	10% to FL, with balanced loads		$\pm .1$		\%
Temperature Coefficient @ FL			. 01	. 02	\%/ ${ }^{\circ} \mathrm{C}$
Transient Response Time	$50 \% \mathrm{FL}$ to FL to $50 \% \mathrm{FL}$, within 1% of Vo, See Figure 6	100			$\mu \mathrm{S}$
Short Circuit Protection	By Hiccup Technique				
Output Overvoltage Protection	None				

GENERAL SPECIFICATIONS

PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Efficiency (at full power)			83		$\%$
Isolation Voltage (1 min.), Input to Output			1500		Vdc
Isolation Resistance			10^{9}		Ω
Isolation Capacitance			300		pF
Switching Frequency (FC)			375		kHz
External Sync Frequency (Fe)	See figure 7 \& 8		400		kHz

PHYSICAL CHARACTERISTICS

PARAMETER	CONDITION $/$ NOTE	MIN	TYP	MAX	UNIT
Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$	$2.00 \times 1.00 \times 0.450 \mathrm{in} .(50.80 \times 25.40 \times 11.43 \mathrm{~mm})$				
Weight	$1.3 \mathrm{oz} .(37 \mathrm{~g})$				

ENVIRONMENTAL SPECIFICATIONS

PARAMETER	CONDITION / NOTE	MIN	TYP	MAX
UNIT				
Operating Temperature Range (Ambient)	Industrial, See Note 2	-40		+71
Storage Temperature Range		-55		
Maximum Operating Case Temperature		+125	${ }^{\circ} \mathrm{C}$	
MTBF	per MIL-HNBK-217F(Ground benign, $\left.+25{ }^{\circ} \mathrm{C}\right)$			
Shielding Connection	-Vin for 24Vin	110		

' When converter enters thermal protection on mode, its duty cycle is reduced momentarily and will resume after its internal temperature (pwm) drops down a few degrees (${ }^{\circ} \mathrm{C}$). The converter's output behaves similar to hiccup short circuit mode.
Contact factory for -55° to $+85^{\circ} \mathrm{C}$ operating temperature range.
${ }^{3}$ The maximum input current at any given input range measured at minimum input voltage is given as $\left.1.6^{*}\right|_{\text {NOMINALL }}$. Nominal input current is the typical value measured at the input of the converter under full-load room temperature and nominal input voltage ($24 \mathrm{~V}_{\text {IN }}$). ${ }^{4}$ Adequate insulation is to be provided to the converters at the end usage as per applicable requirements.
Temperature rise on the case of the converters is to be considered during the end usage as per applicable requirements.

FIGURE 1. Typical connection diagram for Q25001

Part list for Figure 1:
L1= $2.2 \mu \mathrm{H}$
C3=47 $\mu \mathrm{F} @ 50 \mathrm{~V}$ Electrolytic
C4=47 $\mu \mathrm{F} @ 50 \mathrm{~V}$ Electrolytic
$C 7, C 8=10 \mu F$ Ceramic Capacitors, required to meet figure 2.
$\mathrm{C} 5, \mathrm{C} 6=1 \mu \mathrm{~F} @ 25 \mathrm{~V}$ Ceramic, required to meet figure 2.
C9,C10=180 F $@ 16 \mathrm{~V}$ Low ESR Capacitors from Nippon Chemi-Con, optional for 10 mV ripple install C9\&C10, see figure 3 .

FIGURE 2: Output ripple of Q25001 on +Vout as shown in Figure 1.

FIGURE 3: Output ripple of Q25001 on +Vout with another external cap of Nippon Chemi-Con 180 F @16V on the +Vout. The part number is 16PS180MH11.

FIGURE 4: Output ripple of Q25001 on -Vout as shown in Figure 1.

FIGURE 5: Output ripple of Q25001 on -Vout with another external cap of Nippon Chemi-Con $180 \mu \mathrm{~F} @ 16 \mathrm{~V}$ on the + Vout. The part number is 16PS180MH11.

FIGURE 6. Transient Response at Vin=24, Iout changing from Full load to Half load on a Q25001.

$\mathrm{V}_{\mathbb{N}}(\mathrm{V})$	$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{I}_{\text {OUT }}(\mathrm{A})$	Capacitive Loading $(\mu \mathrm{F})$
9	$+/-12$	$+/-1$	220
24	$+/-12$	$+/-1$	440
36	$+/-12$	$+/-1$	660
9	24	1	200
24	24	1	320
36	24	1	400

Table 1. When using units as a dual model, the capacitive loading is across each individual outputs.
When used as a single output, the capacitive load is across + Vout to the -Vout. lator to external clock. An open drain output is the recommended 8. Care should be taken to ensure the ground potential differences interface between the external clock to the Q25 SYNC pin as shown between the converters are minimized. In this configuration all the in figure 7. The clock pulse width must be greater than 15 ns . The converters will be synchronized to the highest frequency device. The external clock frequency must be greater than the frequency of the SYNC pin is a CMOS buffer with pull-up current limited to 200 micro Q25. amps. If the external device forces the SYNC pin low before the internal oscillator ramp completes its charging cycle, the ramp will reset and another cycle begins. If the SYNC pins of multiple Q25 converters are connected together, the first SYNC pin that pulls low will reset the oscillator ramp of all the other converters. All converters will operate in phase when synchronized using the SYNC feature Up to five devices can be synchronized using this method.

FIGURE 7. SYNC from external clock

DIMENSION ARE IN INCH(mm)
TOLERANCE: . XX $\pm .02(.508)$. XXX $\pm .01(.254)$

Pin	Function
DUAL	
INPUT	
1	ON/OFF
2	SYNC IN
3	$-V_{\text {IN }}$
4	$+\mathrm{V}_{\text {IN }}$
OUTPUT	
5	$V_{\text {ADJ }}$
6	No Pin
7	$+\mathrm{V}_{\text {OUT }}$
8	Common
9	$-\mathrm{V}_{\text {OUT }}$

