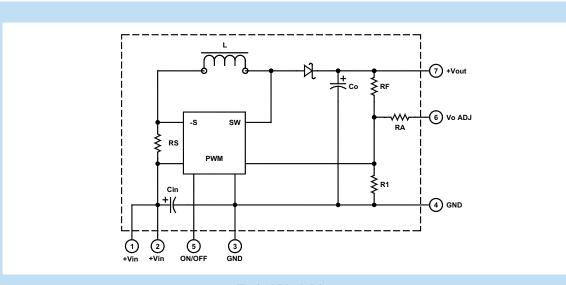


SR5001

5W Step-Up Switching Regulator

 $2.1V_{\scriptscriptstyle IN}$ to $4.5V_{\scriptscriptstyle IN}$ Range


Key Features

- 89% efficiency
- Wide input range (2:1)
- 300µA off state current
- Input current limit
- Undervoltage protection
- 550kHz constant frequency
- · Burst mode operation
- 30W/in³ power density

Functional Description

The SR5001 is a constant frequency, current mode step-up switching regulator with excellent line and load regulation. The converter operates from a DC source from $4.5V_{IN}$ down to $2.1V_{IN}$ and provides a regulated $5V_{OUT}@450$ mA. Burst mode operation improves efficiency at light loads, while high switching frequency and SMD technology makes achieving high power density, low cost and high reliability possible. Package size is 1"×0.6"×0.28" in 7-pin SIP.

Typical Block Diagram

Electrical Specifications INPUT SPECIFICATIONS

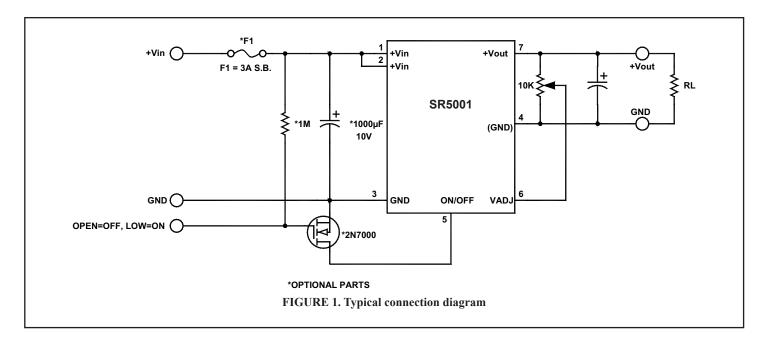
Unless otherwise specified, all parameters are given under typical +25°C with nominal input voltage and under full output load conditions.

PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Input Voltage Range		2.1	3.3	4.5	Vdc
No Load Input Curent			300		μA
Full Load Input Curent			760		mA
Input Reflected Ripple	See Figure 2		50		mA _{PP}
Off State Input Current			300		μΑ
Remote On/Off Control	Reference to GND, Open = ON, Short = OFF				
Turn On Delay	Including Soft Start, See Figure 3		5	8	mS
Undervoltage Lockout		1.5	2	2.4	Vdc

OUTPUT SPECIFICATIONS

PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Output Voltage			5		Vdc
Output Voltage Accuracy			0.5	1	%
Full Load Output Current			450		mA
Line Regulation			±1	±2	% of V _{OUT}
Load Regulation	V = 3.3V, NL to FL		1	2	% of V _{OUT}
Ripple and Noise	See Figure 2		30	50	mV
Temperature Coefficient			0.01	0.02	%
Transient Response	See Figure 4		100		μS
Short Circuit Current	Input Current Limit, Input Fuse				
V Adjust Range			5	10	%

GENERAL SPECIFICATIONS


CENERAL OF EON TOATIONS					
PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Efficiency	V_{IN} = 3.3, V_{O} = 5V@450mA; See Figures 5 & 6		89		%
Switching Frequency	Fixed	500	550	650	kHz
Isolation	None				
Thermal Resistance	Internally dissipated		0.3	0.4	°C/W
MTBF	per MIL-HNBK-217F (Ground benign, +25°C)		2.9x10 ⁶		hours

ENVIRONMENTAL SPECIFICATIONS

PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Humidity	Non-condensing			95	%
Storage Temperature		-60		+125	°C
Operating Temperature, Commercial		-40		+71	°C

PHYSICAL CHARACTERISTICS

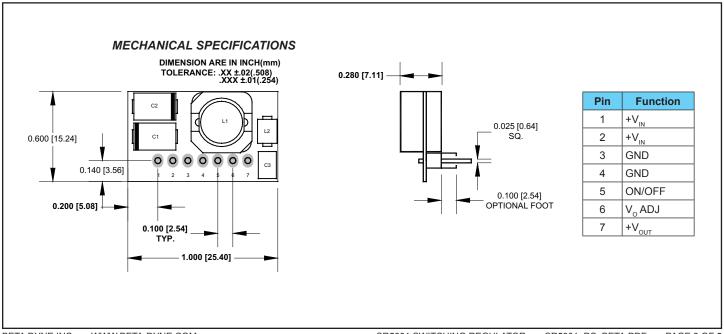
PARAMETER	CONDITION / NOTE	MIN	TYP	MAX	UNIT
Dimensions (L×W×H)	1.00×0.60×0.28 in. (25.40×15.24×7.11mm)				
Weight	0.17 oz. (4.7g)				

BURST MODE OPERATION

At loads of less than 50% of full load (FL), the converter operates in Burst Mode. Burst Mode Operation saves energy by reducing the switching frequency of the converter down to 25kHz. Operation at frequencies lower than 500kHz results in higher output ripple,

which can be 3–5 times higher than that at full load. In applications where higher output ripple cannot be accepted, a capacitor from $220\mu F$ to $4700\mu F$ can be used to reduce the Burst Mode Operation ripple down to acceptable levels.

SHORT CIRCUIT PROTECTION


The converter features input current limit protection. The maximum input current limit is set at -V $_{\rm IN}$ minimum (2.5V) for I $_{\rm O}$ FL+20% typical at room temperature. When I $_{\rm O}$ exceeds its maximum output value, the output voltage starts to drop until V $_{\rm O}{\le}{\rm V}_{\rm IN}{-}{\rm V}_{\rm FB}$. At this point, the input is connected through the series inductor and diode to the

output load. The input fuse will open when a direct short is placed between $\rm V_{\rm o}$ and ground (GND). A slow blow fuse is recommended to allow enough time to charge any input and/or output capacitance. When a resetable fuse is used, make sure it will operate over the temperature range of the converter.

ON/OFF

The converter can be turned ON/OFF through Pin 5. When Pin 5 is left open, the converter is ON. When Pin 5 is pulled low, $V_{\text{PIN5}} \le 0.35 \text{V}$, the converter will turn OFF. Use a low $R_{\text{DS ON}}$ MOSFET

(see Figure 1) for switching.

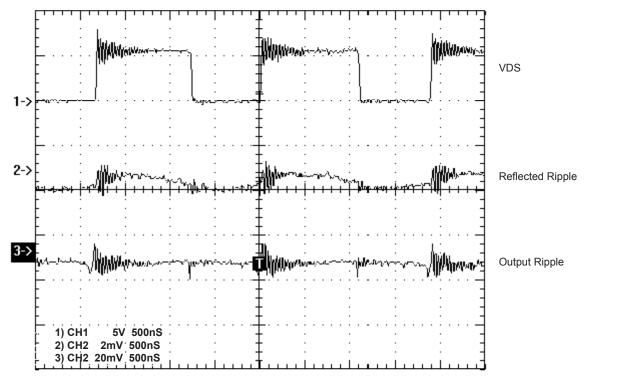


FIGURE 2. Input reflected ripple/output ripple

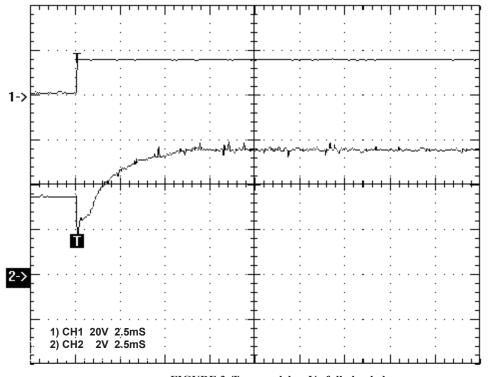
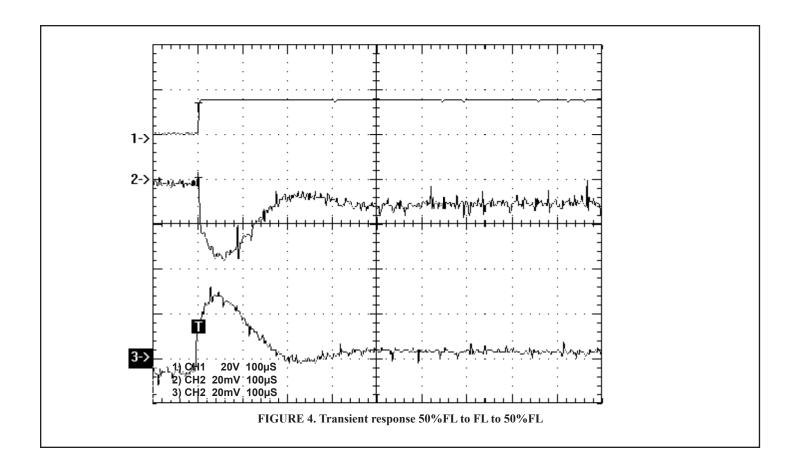
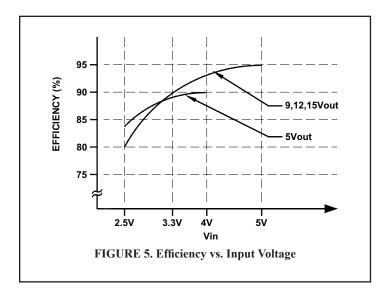
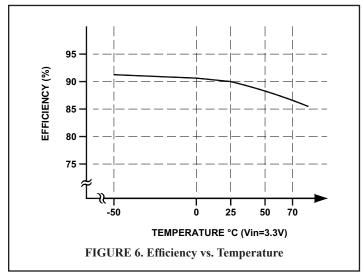





FIGURE 3. Turn on delay, $\boldsymbol{V}_{\boldsymbol{O}}$ fully loaded

